» » Тяжелые металлы – наиболее опасные элементы, способные загрязнять почву. Реферат последствия загрязнения почв тяжелыми металлами и радионуклидами Загрязнение почв тяжелыми металлами текстильное производство

Тяжелые металлы – наиболее опасные элементы, способные загрязнять почву. Реферат последствия загрязнения почв тяжелыми металлами и радионуклидами Загрязнение почв тяжелыми металлами текстильное производство

Литература:

1. Горленко М.В., Кожевин П.А. Дифференциация почвенных микробных сообществ с помощью мультисубстратного тестирования. Микробиология, 1994, т.63, №2, с. 289-293.

2. Кожевин П.А. Микробные популяции в природе. М.: Изд-во МГУ, 1989, 175 с.

3. Колешко О.И. Микробиология: [Учеб. пособ. для биол. спец. ВУЗОВ]. - Минск: Высш. Шк. 1977, - 271 с.

4. Методы почвенной микробиологии и биохимии.// Под ред. Д.Г. Звягинцева. М.: Изд-во МГУ 1991. 304 с.

5. Микроморфологический метод в исследовании генезиса почв. - М.: Наука, 1966. - 172 с.

ЗАГРЯЗНЕНИЕ ПОЧВЫ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

Н.А. Казакова

Ульяновский государственный педагогический университет

имени И.Н. Ульянова

При современных условиях развития производства важное значение имеет познание механизмов и закономерностей распределения тяжелых металлов в окружающей среде. Это обстоятельство определяет необходимость проведения постоянного мониторинга за поступлением тяжелых металлов в экосистемы.

Ключевые слова: почва, загрязнение, окружающая среда, аккумуляция, миграция, тяжелые металлы, ПДК, токсиканты.

Современная экологическая ситуация как в глобальном, так и в региональном масштабах обостряется, и человечество вынуждено искать эффективные меры устойчивого развития биосферы.

Серьезной экологической проблемой за последнее столетие стало интенсивное развитие промышленности и транспортного комплекса, представляющих собой наиболее мощные источники загрязнения биосферы вредными ингредиентами. Среди неорганических ксенобиотиков антропогенного происхождения к наиболее опасным и прогрессивно развивающимся в природной среде относятся металлы. Интенсивное промышленное и сельскохозяйственное использование природных ресурсов вызвало существенные изменения биохимических циклов большинства из них.

Из большого числа разнообразных химических веществ, поступающих в окружающую среду из антропогенных источников, особое место занимают тяжелые металлы (ТМ). В связи с уве-

личивающимся загрязнением биосферы особый интерес и важное практическое значение имеет, с одной стороны, познание механизмов и закономерностей поведения и распределения ТМ в окружающей среде, с другой, тот факт, что свыше 90% всех болезней человека прямо или косвенно связано с состоянием окружающей среды, которая является либо причиной возникновения заболеваний, либо способствует их развитию (Сапрыкин Ф.Я., 1984).

Проблема ТМ в современных условиях производства - глобальная, поэтому необходимы соответствующие меры по предотвращению загрязнения окружающей среды. Опасность проблемы состоит и в том, что для ТМ существует ряд альтернативных путей поступления и аккумуляции их в продукции (Перельман А.И.,1989).

Аккумуляция и миграция ТМ в почвах естественных ландшафтов определяется типом почвообразования. Виноградов А.П. (1953), Добровольский Г.В. (1996) утверждают, что около 50% всего количества ТМ, находящиеся в твердой фазе почвы, связаны гидроксидом железа. Часть ТМ прочно связана с глинистыми минералами, а обменные формы, связанные как с минералами, так и с органическим веществом, составляют малую часть от общей массы ТМ в профиле почв.

Почвы являются природными накопителями ТМ в окружающей среде и основным источником загрязнения сопредельных сред, включая

высшие растения. ТМ находятся в почве в виде различных химических соединений. В почвенном растворе они присутствуют в форме свободных катионов и ассоциатов с компонентами раствора. В твердой части почвы они находятся в форме обменных катионов и поверхностных комплексных соединений, в виде примесей глинистых минералов, в форме собственных минералов, устойчивых осадков малорастворимых солей.

К ТМ относятся свыше 40 химических элементов таблицы Менделеева с атомными массами, превышающими 50 атомных единиц, или химические элементы с удельным весом выше 5 г/см3. Не все ТМ представляют одинаковую опасность для живых организмов. По токсичности и способности накопления более десяти элементов признаны приоритетными загрязнителями биосферы. Среди них выделяют: ртуть, свинец, кадмий, медь, олово, цинк, молибден, кобальт, никель.

Нормирование содержания ТМ в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимиче-

ских свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. На сегодняшний день предложено множество шкал экологического нормирования тяжелых металлов. В некоторых случаях за предельно допустимую концентрацию принято самое высокое содержание металлов, наблюдаемое в обычных антропогенных почвах, в других - содержание, являющееся предельным по фитотоксичности. В большинстве случаев для тяжелых металлов предложены ПДК, превосходящие верхнюю норму в несколько раз.

Для характеристики техногенного загрязнения тяжелыми металлами используется коэффициент концентрации элемента в загрязненной почве к его фоновой концентрации. При загрязнении несколькими тяжелыми металлами степень загрязнения оценивается по величине суммарного показателя концентрации ^с). Предложенная ИМГРЭ шкала загрязнения почвы тяжелыми металлами приведена в таблице 1.

Таблица 1.Схема оценки почв сельскохозяйственного использования по степени за-

грязнения химическими веществами (Госкомгид ромет СССР, №02 10 51-233 от 10.12.90)

Допустимое <16,0 Превышает фоновое, но не выше ПДК. Использование под любые культуры Снижение уровня воздействия источников загрязнения почв. Снижение доступности токсикантов для растений.

Умеренно опасное 1 ,0 13 - Превышает ПДК при лимитирующем общесанитарном и миграционном водном показателе вредности, но ниже ПДК по транслокационному показателю. Использование под любые культуры при условии контроля качества продукции растениеводства При наличии веществ с лимитирующим миграционным водным показателем производится контроль за содержанием этих веществ в поверхностных и подземных водах.

Высоко опасное 1 1-н 00 со Превышает ПДК при лимитирующем транслокационном показателе вредности. Использование под технические культуры без получения из них продуктов питания и кормов. Обязательный контроль за содержанием токсикантов в растениях, используемых в качестве питания и кормов. Ограничения использования зеленой массы на корм скоту, особенно растений-концентратов.

Чрезвычайно опасное >128 Превышает ПДК по всем показателям. Исключить из с/х использования Снижение уровня загрязнения и связывание токсикантов в атмосфере, почве и водах.

Определение ТМ в почве проводят методом атомно-абсорбционной спектрометрии с пламенной атомизацией. Для определения содержания ТМ используют атомноабсорбционный спектрофотометр ААБ-3, -

управляемый микро ЭВМ прибор для проведения абсорбционного анализа и осуществляется пламенным или беспламенным устройством.

В соответствии с принятой медиками-гигиенистами схеме нормирование тяжелых металлов в почвах подразделяется на транслокационное (переход элемента в растения), миграционное водное (переход в воду), и общесанитарное (влияние на самоочищающую способность почв и

почвенный микробиоценоз).

Во многих регионах страны с развитым промышленным и сельскохозяйственным производством, всегда существует опасность загрязнения экосистем избыточными количествами тяжелых металлов. Это обстоятельство определяет необходимость проведения экологогеохимического районирования территорий и организации постоянного мониторинга за поступлением и распределением тяжелых металлов в экосистемах. При этом необходимо определять важнейшие источники поступления тяжелых металлов в среду: естественные (природные) и техногенные.

Литература:

1. Алексеев Ю.В. Тяжелые металлы в почвах и растениях. Л.: Агропром-издат, 1987. 142с.

2. Виноградов А.П. Геохимия редких и рассеянных химических элементов в почвах. - М.:

Изд-во АН СССР, 1953. - 237 с.

3. Госкомгидромет СССР, №02 10 51-233 от 10.12.90

4. Добровольский Г.В. Значение почв в сохранении биоразнообразия. - Почвоведение. -1996. - 694с.

5. Ковда В.А. Биогеохимия почвенного покрова. М.: Наука, 1985. - 263 с.

6. Перельман А.И. Геохимия. М.: Высшая школа, 1989.- 407 с.

7. Практикум по агрохимии/Под ред. В.Г.Минеева. М.: Изд-во МГУ, 1989. - 214 с.

За счет антропогенной деятельности в окружающую среду поступает огромное количество различных химических элементов и их соединений - до 5 т органических и минеральных отходов на каждого человека ежегодно. От половины до двух третей этих поступлений остается в шлаках, золе, образуя локальные аномалии в химическом составе почв и вод.

Предприятия, строения, городское хозяйство, промышленные, бытовые и фекальные отходы населенных пунктов и промышленных районов не только отчуждают почву, но на десятки километров вокруг нарушают нормальную биогеохимию и биологию почвенно-экологических систем. В какой-то степени каждый город или индустриальный центр является причиной возникновения крупных биогеохи- мических аномалий, опасных для человека.

Источником тяжелых металлов являются, главным образом, промышленные выбросы. При этом лесные экосистемы страдают значительно больше, чем почвы сельскохозяйственных угодий и сельскохозяйственные культуры. Особо токсичными являются свинец, кадмий, ртуть, мышьяк и хром.

Тяжелые металлы, как правило, накапливаются в почвенной толще, особенно в верхних гумусовых горизонтах. Период полууда- ления тяжелых металлов из почвы (выщелачивание, эрозия, потребление растениями, дефляция) составляет в зависимости от типа почвы для:

  • цинка - 70-510 лет;
  • кадмия - 13-ПОлет;
  • меди - 310-1500 лет;
  • свинца - 740-5900 лет.

Сложные и иногда необратимые последствия влияния тяжелых металлов можно понять и предвидеть только на основе ландшафт- но-биогеохимического подхода к проблеме токсикантов в биосфере. Особенно влияют на уровни загрязнения и токсико-экологическую ситуацию следующие показатели:

  • биопродуктивность почв и содержание в них гумуса;
  • кислотно-основный характер почв и вод;
  • окислительно-восстановительные условия;
  • концентрация почвенных растворов;
  • поглотительная способность почв;
  • гранулометрический состав почв;
  • тип водного режима.

Роль этих факторов изучена пока недостаточно, хотя именно почвенный покров является конечным приемником большинства техногенных химических веществ, вовлекаемых в биосферу. Почвы являются главным аккумулятором, сорбентом и разрушителем токсикантов.

Значительная часть металлов попадает в почвы от антропогенной деятельности. Рассеивание начинается с момента добычи руды, газа, нефти, угля и других полезных ископаемых. Цепочка рассеивания элементов прослеживается от добывающего рудника, карьера, далее потери происходят при транспортировке сырья на обогатительную фабрику, на самой фабрике рассеивание продолжается по технологической линии обогащения, затем в процессе металлургического передела, изготовления металлов и вплоть до отвалов, промышленных и бытовых свалок.

С выбросами промышленных предприятий в значительных количествах поступает широкий набор элементов, причем ЗВ не всегда связаны с основной продукцией предприятий, а могут входить в состав примесей. Так, вблизи свинцово-плавильного завода приоритетными загрязнителями, кроме свинца и цинка, могут быть кадмий, медь, ртуть, мышьяк, селен, а около предприятий, выплавляющих алюминий, - фтор, мышьяк, бериллий. Значительная часть выбросов предприятий поступает в глобальный круговорот - до 50 % свинца, цинка, меди и до 90 % ртути.

Годовая добыча некоторых металлов превосходит их природную миграцию, особенно значительно для свинца и железа. Очевидно все возрастающее давление техногенных потоков металлов на окружающую среду, в том числе и на почвы.

Близость расположения источника загрязнения сказывается на атмосферном загрязнении почв. Так, два крупных предприятия в Свердловской области - Уральский алюминиевый завод и Красноярская ТЭЦ - оказались источниками техногенного загрязнения атмосферного воздуха с выраженными границами выпадения техногенных металлов с атмосферными осадками.

Опасность загрязнения почв техногенными металлами из аэрозолей воздуха существует для любых видов почв и в любых местах города с той лишь разницей, что почвы, ближе расположенные к источнику техногенеза (металлургический комбинат, ТЭЦ, АЗС или подвижный транспорт) будут больше загрязнены.

Часто интенсивное действие предприятий распространяется на небольшую площадь, что приводит повышению содержания тяжелых металлов, соединений мышьяка, фтора, оксидов серы, серной кислоты, иногда соляной кислоты, цианидов в концентрациях, часто превышающих ПДК (табл. 4.1). Гибнут травяной покров, лесные насаждения, разрушается почвенный покров, развиваются эрозионные процессы. До 30-40 % тяжелых металлов из почвы может поступать в грунтовые воды.

Однако почва также служит мощным геохимическим барьером для потока ЗВ, но лишь до определенного предела. Расчеты показывают, что черноземы способны только в пахотном слое мощностью 0-20 см прочно фиксировать до 40-60 т/га свинца, подзолистые - 2-6 т/га, а почвенные горизонты в целом - до 100 т/га, но при этом в самой почве возникает острая токсикологическая ситуация.

Еше одна особенность почвы - способность активно трансформировать поступающие в нее соединения. В этих реакциях принимают участие минеральные и органические компоненты, возможна трансформация биологическим путем. При этом наиболее распространены процессы перехода водорастворимых соединений тяжелых металлов в труднорастворимые (оксиды, гидроксиды, соли с низким произвеТаблица 4.1. Перечень источников загрязнения и химических элементов, накопление которых возможно в почве в зоне влияния этих источников (Методические указания МУ 2.1.7.730-99 «Гигиеническая оценка качества почвы населенных мест»)

Источники

загрязнения

Тип производства

Коэффициент концентрирования К с

Цветная металлургия

Производство цветных металлов из руд и концентратов

Pb, Zn, Си, Ag

Sn, As, Cd, Sb, Hg, Se, Bi

Вторичная переработка цветных металлов

Pb, Zn, Sn, Си

Производство твердых и тугоплавких цветных металлов

Производство титана

Ag, Zn, Pb, В, Си

Ti, Mn, Mo, Sn, V

Черная металлургия

Производство легированных сталей

Со, Mo, Bi, W, Zn

Железорудное производство

Машиностроительная и металлообрабатывающая про- мышленность

Предприятия с термической обработкой металлов (без литейных цехов)

Ni, Cr, Hg, Sn, Си

Производство свинцовых аккумуляторов

Производство приборов для электронной и электротехнической промышленности

Химическая промышленность

Производство суперфосфата

Редкие земли, Cu, Cr, As, It

Производство пластмасс

Промышленность

стройматериалов

Производство цемента

Полиграфическая

промышленность

Шрифтолитейные заводы, типографии

Твердые бытовые отходы

Pb, Cd, Sn, Си, Ag, Sb, Zn

Осадки канализационных сточных вод

Pb, Cd, V, Ni, Sn, Cr, Си, Zn

дением растворимости ПР) в составе почвенного поглощающего комплекса (ППК): органическое вещество образует с ионами тяжелых металлов комплексные соединения. Взаимодействие ионов металлов с компонентами почвы происходит по типу реакций сорбции, осаждения-растворения, комплексообразования, образования простых солей. Скорость и направление процессов трансформации зависят от pH среды, содержания тонкодисперсных частиц, количества гумуса.

Для экологических последствий загрязнения почв тяжелыми металлами существенное значение приобретают величины концентраций и формы нахождения тяжелых металлов в почвенном растворе. Подвижность тяжелых металлов тесно связана с составом жидкой фазы: низкая растворимость оксидов и гидроксидов тяжелых металлов обычно наблюдается в почвах с нейтральной или щелочной реакцией. Напротив, мобильность тяжелых металлов наиболее высока при сильнокислой реакции почвенного раствора, поэтому токсическое влияние тяжелых металлов в сильнокислых таежно-лесных ландшафтах может быть весьма существенным по сравнению с нейтральными или щелочными почвами. Токсичность элементов для растений и живых организмов непосредственно связана с их подвижностью в почвах. Помимо кислотности на токсичность влияют свойства почв, обусловливающие прочность фиксации поступающих ЗВ; существенное влияние оказывает совместное присутствие различных ионов.

Наибольшую опасность для высших организмов, в том числе и для человека, представляют последствия микробной трансформации неорганических соединений тяжелых металлов в комплексные соединения. Последствиями загрязнения металлами может быть и нарушение почвенных трофических цепей в биогеоценозах. Возможно также изменение целых комплексов, сообществ микроорганизмов и почвенных животных. Тяжелые металлы ингибируют важные микробиологические процессы в почве - трансформацию соединений углерода - так называемое «дыхание» почвы, а также азотфиксацию.

К тяжелым металлам (ТМ) относятся около 40 металлов с атомными массами свыше 50 и плотностью более 5 г/см 3 , хотя в число ТМ входит и легкий бериллий. Оба признака достаточно условны и перечни ТМ по ним не совпадают.

По токсичности и распространению в окружающей среде можно выделить приоритетную группу ТМ: Pb, Hg, Cd, As, Bi, Sn, V, Sb. Несколько меньшее значение имеют: Сг, Cu, Zn, Mn, Ni, Co, Mo.

Все ТМ в той или иной степени ядовиты, хотя некоторые из них (Fe, Cu, Co, Zn, Mn) входят в состав биомолекул и витаминов.

Тяжелые металлы антропогенного происхождения попадают из воздуха в почву в виде твердых или жидких осадков. Лесные массивы с их развитой контактирующей поверхностью особенно интенсивно задерживают тяжелые металлы.

В общем, опасность загрязнения тяжелыми металлами из воздуха существует в равной степени для любых почв. Тяжелые металлы негативно влияют на почвенные процессы, плодородие почв и качество сельскохозяйственной продукции. Восстановление биологической продуктивности почв, загрязненных тяжелыми металлами – одна из наиболее сложных проблем охраны биоценозов.

Важной особенностью металлов является устойчивость загрязнения. Сам элемент разрушиться не может, переходя из одного соединения в другое или перемещаясь между жидкой и твердой фазами. Возможны окислительно-восстановительные переходы металлов с переменной валентностью.

Опасные для растений концентрации ТМ зависят от генетического типа почвы. Основными показателями, влияющими на накопление ТМ в почвах, являются кислотно-основные свойства и содержание гумуса .

Учесть все разнообразие почвенно-геохимических условий при установлении ПДК тяжелых металлов практически невозможно. В настоящее время для ряда тяжелых металлов установлены ОДК их содержания в почвах, которые используются в качестве ПДК (приложение 3).

При превышении допустимых значений содержания ТМ в почвах эти элементы накапливаются в растениях в количествах, превышающих их ПДК в кормах и продуктах питания.

В загрязненных почвах глубина проникновения ТМ обычно не превышает 20 см, однако при сильном загрязнении ТМ могут проникать на глубину до 1,5м. Среди всех тяжелых металлов цинк и ртуть обладают наибольшей миграционной способностью и распределяются равномерно в слое почвы на глубине 0…20 см, в то время как свинец накапливается только в поверхностном слое (0…2,5 см). Промежуточное положение между этими металлами занимает кадмий.

У свинца четко выражена тенденция к накоплению в почве, т.к. его ионы малоподвижны даже при низких значениях рН. Для различных видов почв скорость вымывания свинца колеблется от 4г до 30 г/га в год. В то же время количество вносимого свинца может составлять в различных районах 40…530 г/га в год. Попадающий при химическом загрязнении в почву свинец сравнительно легко образует гидроксид в нейтральной или щелочной среде. Если почва содержит растворимые фосфаты, тогда гидроксид свинца переходит в труднорастворимые фосфаты.

Значительные загрязнения почвы свинцом можно обнаружить вдоль крупных автомагистралей, вблизи предприятий цветной металлургии, вблизи установок по сжиганию отходов, где отсутствует очистка отходящих газов. Проводимая постепенная замена моторного топлива, содержащего тетраэтилсвинец, топливом без свинца дает положительные результаты: поступление свинца в почву резко снизилось и в будущем этот источник загрязнения в значительной степени будет ликвидирован.

Опасность попадания свинца с частицами почв в организм ребенка является одним из определяющих факторов при оценке опасности загрязнения почв населенных пунктов. Фоновые концентрации свинца в почвах разного типа колеблются в пределах 10…70 мг/кг. По мнению американских исследователей, содержание свинца в городских почвах не должно превышать 100 мг/кг – при этом обеспечивается защита организма ребенка от избыточного поступления свинца через руки и загрязненные игрушки. В реальных же условиях содержание свинца в почве значительно превышает этот уровень. В большинстве городов содержание свинца в почве варьируется в пределах 30…150 мг/кг при средней величине около 100 мг/кг. Наиболее высокое содержание свинца – от 100 до 1000 мг/кг – обнаруживается в почве городов, в которых расположены металлургические и аккумуляторные предприятия (Алчевск, Запорожье, Днепродзержинск, Днепропетровск, Донецк, Мариуполь, Кривой Рог).

Растения более устойчивы по отношению к свинцу, чем люди и животные, поэтому необходимо тщательно следить за содержанием свинца в продуктах питания растительного происхождения и в фураже.

У животных на пастбищах первые признаки отравления свинцом наблюдаются при суточной дозе около 50 мг/кг сухого сена (на сильно загрязненных свинцом почвах получаемое сено может содержать свинца 6,5 г/кг сухого сена!). Для людей при употреблении салата ПДК составляет 7,5 мг свинца на 1 кг листьев.

В отличие от свинца кадмий попадает в почву в значительно меньших количествах: около 3…35 г/га в год. Кадмий заносится в почву из воздуха (около 3 г/га в год) либо с фосфорсодержащими удобрениями (35…260 г/т). В некоторых случаях источником загрязнения могут быть предприятия, связанные с переработкой кадмия. В кислых почвах со значением рН<6 ионы кадмия весьма подвижны и накопления металла не наблюдается. При значениях рН>6 кадмий отлагается вместе с гидроксидами железа, марганца и алюминия, при этом происходит потеря протонов группами ОН. Такой процесс при понижении рН становится обратимым, и кадмий, а также другие ТМ, могут необратимо медленно диффундировать в кристаллическую решетку оксидов и глин.

Соединения кадмия с гуминовыми кислотами значительно менее устойчивы, чем аналогичные соединения свинца. Соответственно накопление кадмия в гумусе протекает в значительно меньшей степени, чем накопление свинца.

В качестве специфичного соединения кадмия в почве можно назвать сульфид кадмия, который образуется из сульфатов при благоприятных условиях восстановления. Карбонат кадмия образуется только при значениях рН >8, таким образом, предпосылки для его осуществления крайне незначительны.

В последнее время большое внимание стали уделять тому обстоятельству, что в биологическом иле, который вносится в почву для ее улучшения, обнаруживается повышенная концентрация кадмия. Около 90% кадмия, имеющегося в сточных водах, переходит в биологический ил: 30% при первоначальном осаждении и 60…70% при его дальнейшей обработке.

Удалить кадмий из ила практически невозможно. Однако, более тщательный контроль за содержанием кадмия в сточных водах позволяет снизить его содержание в иле до значений ниже 10 мг/кг сухого вещества. Поэтому практика использования ила очистных сооружений в качестве удобрения весьма различается в разных странах.

Основными параметрами, определяющими содержания кадмия в почвенных растворах или его сорбцию почвенными минералами и органическими компонентами, являются рН и вид почвы, а также присутствие других элементов, например кальция.

В почвенных растворах концентрация кадмия может составлять 0,1…1мкг/л. В верхних слоях почвы, глубиной до 25см, в зависимости от концентрации и типа почвы элемент может удерживаться в течение 25…50 лет, а в отдельных случаях даже 200…800 лет.

Растения усваивают из минеральных веществ почвы не только жизненно важные для них элементы, но и такие, физиологическое действие которых либо неизвестно, либо безразлично для растения. Содержание кадмия в растении полностью определяется его физическими и морфологическими свойствами – его генотипом.

Коэффициент переноса тяжелых металлов из почвы в растения приведены ниже:

Pb 0,01…0,1 Ni 0,1…1,0 Zn 1…10

Cr 0,01…0,1 Cu 0,1…1,0 Cd 1…10

Кадмий склонен к активному биоконцентрированию, что приводит в довольно короткое время к его накоплению в избыточных биодоступных концентрациях. Поэтому кадмий, по сравнению с другими ТМ, является наиболее сильным токсикантом почв (Cd > Ni > Cu > Zn).

Между отдельными видами растений наблюдаются значительные различия. Если шпинат (300 млрд -1), кочанный салат (42 млрд -1), петрушку (31 млрд -1), а также сельдерей, кресс-салат, свеклу и лук-резанец можно отнести к растениям, „обогащенным” кадмием, то в бобовых, томатах, косточковых и семечковых фруктах содержится относительно мало кадмия (10…20 млрд -1). Все концентрации указаны относительно массы свежего растения (или плода). Из зерновых культур зерно пшеницы сильнее загрязнено кадмием, чем зерно ржи (50 и 25 млрд -1), однако 80…90% поступившего из корней кадмия остается в корнях и соломе.

Поглощение кадмия растениями из почвы (перенос почва/растение) зависит не только от вида растения, но и от содержания кадмия в почве. При высокой концентрации кадмия в почве (более 40 мг/кг) на первом месте стоит его поглощение корнями; при меньшем содержании наибольшее поглощение происходит из воздуха через молодые побеги. Длительность роста также влияет на обогащение кадмием: чем короче вегетация, тем меньше перенос из почвы в растение. Это является причиной того, что накопление кадмия в растениях из удобрений оказывается меньшим, чем его разбавление за счет ускорения роста растения, вызванного действием этих же удобрений.

Если в растениях достигается высокая концентрация кадмия, то это может привести к нарушениям нормального роста растений. Урожай бобов и моркови, например, снижается на 50%, если содержание кадмия в субстрате составляет 250 млн -1 . У моркови листья увядают при концентрации кадмия 50 мг/кг субстрата. У бобов при этой концентрации на листьях выступают ржавые (резко очерченные) пятна. У овса на концах листьев можно наблюдать хлороз (пониженное содержание хлорофилла).

По сравнению с растениями многие виды грибов накапливают большое количество кадмия. К грибам с высоким содержанием кадмия относят некоторые разновидности шампиньонов, в частности овечий шампиньон, в то время как луговой и культурный шампиньоны содержат относительно мало кадмия. При исследовании различных частей грибов было установлено, что пластинки в них содержат больше кадмия, чем сама шляпка, а меньше всего кадмия в ножке гриба. Как показывают опыты по выращиванию шампиньонов, двух-трехкратное увеличение содержания кадмия в грибах обнаруживается в том случае, если его концентрация в субстрате увеличивается в 10 раз.

Дождевые черви обладают способностью быстрого накопления кадмия из почвы, вследствие чего они оказались пригодными для биоиндикации остатков кадмия в почве.

Подвижность ионов меди еще выше, чем подвижность ионов кадмия. Это создает более благоприятные условия для усвоения меди растениями. Благодаря своей высокой подвижности медь легче вымывается из почвы, чем свинец. Растворимость соединений меди в почве заметно увеличивается при значениях рН< 5. Хотя медь в следовых концентрациях считается необходимой для жизнедеятельности, у растений токсические эффекты проявляются при содержании 20 мг на кг сухого вещества.

Известно альгицидное действие меди. Медь оказывает токсическое действие и на микроорганизмы, при этом достаточна концентрация около 0,1мг/л. Подвижность ионов меди в гумусном слое ниже, чем в расположенном ниже минеральном слое.

К сравнительно подвижным элементам в почве относится цинк. Цинк принадлежит к числу распространенных в технике и быту металлов, поэтому ежегодное внесение его в почву достаточно велико: оно составляет 100…2700г на гектар. Особенно загрязнена почва вблизи предприятий, перерабатывающих цинксодержащие руды.

Растворимость цинка в почве начинает увеличиваться при значениях рН<6. При более высоких значениях рН и в присутствии фосфатов усвояемость цинка растениями значительно понижается. Для сохранения цинка в почве важнейшую роль играют процессы адсорбции и десорбции, определяемые значением рН, в глинах и различных оксидах. В лесных гумусовых почвах цинк не накапливается; например, он быстро вымывается благодаря постоянному естественному поддержанию кислой среды.

Для растений токсический эффект создается при содержании около 200мг цинка на кг сухого материала. Организм человека достаточно устойчив по отношению к цинку и опасность отравления при использовании сельскохозяйственных продуктов, содержащих цинк, невелика. Тем не менее, загрязнение почвы цинком представляет серьезную экологическую проблему, так как при этом страдают многие виды растений. При значениях рН>6 происходит накопление цинка в почве в больших количествах благодаря взаимодействию с глинами.

Различные соединения железа играют существенную роль в почвенных процессах в связи со способностью элемента менять степень окисления с образованием соединений различной растворимости, окисленности, подвижности. Железо в очень высокой степени вовлечено в антропогенную деятельность, оно отличается настолько высокой технофильностью, что нередко говорят о современном «ожелезнении» биосферы. В техносферу в настоящее время вовлечено более 10 млрд т железа, 60% которого рассеяно в пространстве.

Аэрация восстановленных горизонтов почвы, различных отвалов, терриконов приводит к реакциям окисления; при этом присутствующие в таких материалах сульфиды железа преобразуются в сульфаты железа с одновременным образованием серной кислоты:

4FeS 2 + 6H 2 O + 15O 2 = 4FeSO 4 (OH) + 4H 2 SO 4

В таких средах значения рН могут снижаться до 2,5…3,0. Серная кислота разрушает карбонаты с образованием гипса, сульфатов магния и натрия. Периодическая смена окислительно-восстановительных условий среды приводит к декарбонизации почв, дальнейшему развитию устойчивой кислой среды с рН 4…2,5, причем соединения железа и марганца накапливаются в поверхностных горизонтах.

Гидроксиды и оксиды железа и марганца при образовании осадков легко захватывают и связывают никель, кобальт, медь, хром, ванадий, мышьяк.

Основные источники загрязнения почвы никелем – предприятия металлургии, машиностроения, химической промышленности, сжигание каменного угля и мазута на ТЭЦ и котельных. Антропогенное загрязнение никелем наблюдается на расстоянии до 80…100 км и более от источника выброса.

Подвижность никеля в почве зависит от концентрации органического вещества (гумусовых кислот), рН и потенциала среды. Миграция никеля носит сложный характер. С одной стороны, никель поступает из почвы в виде почвенного раствора в растения и поверхностные воды, с другой – его количество в почве пополняется вследствие разрушения почвенных минералов, отмирания растений и микроорганизмов, а также за счет его внесения в почву с атмосферными осадками и пылью, с минеральными удобрениями.

Основной источник загрязнения почвы хромом – сжигание топлива и отходы гальванических производств, а также отвалы шлаков при производстве феррохрома, хромовых сталей; некоторые фосфорные удобрения содержат хрома до 10 2 …10 4 мг/кг.

Поскольку Cr +3 в кислой среде инертен (выпадая почти полностью в осадок при рН 5,5), его соединения в почве весьма стабильны. Напротив, Cr +6 крайне нестабилен и легко мобилизуется в кислых и щелочных почвах. Снижение подвижности хрома в почвах может приводить к его дефициту в растениях. Хром входит в состав хлорофилла, придающего листьям растений зеленый цвет, и обеспечивает усвоение растениями из воздуха углекислоты.

Установлено, что известкование, а также применение органических веществ и соединений фосфора существенно снижает токсичность хроматов в загрязненных почвах. При загрязнении почв шестивалентным хромом подкисление, а затем применение восстанавливающих агентов (например, серы) используется для восстановления его до Cr +3 , после чего проводится известкование для осаждения соединений Cr +3 .

Высокая концентрация хрома в почве городов (9…85 мг/кг) связана с высоким содержанием его в дождевых и поверхностных водах.

Накопление или вымывание токсичных элементов, попавших в почву, в значительной степени зависит от содержания гумуса, который связывает и удерживает ряд токсичных металлов, но в первую очередь – медь, цинк, марганец, стронций, селен, кобальт, никель (в гумусе количество этих элементов в сотни-тысячи раз больше, чем в минеральной составляющей почв).

Природные процессы (солнечная радиация, климат, выветривание, миграция, разложение, вымывание) способствуют самоочищению почв, основной характеристикой которого является его продолжительность. Продолжительность самоочищения – это время, в течение которого происходит уменьшение на 96% массовой доли загрязняющего вещества от начального значения или до его фонового значения. Для самоочищения почв, а также их восстановления требуется много времени, которое зависит от характера загрязнения и природных условий. Процесс самоочищения почв длится от нескольких дней до нескольких лет, а процесс восстановления нарушенных земель – сотни лет.

Способность почв к самоочищению от тяжелых металлов невелика. Из довольно богатых органическим веществом лесных почв умеренного пояса с поверхностным стоком удаляется только примерно 5% поступающего из атмосферы свинца и около 30% цинка и меди. Остальная часть выпавших ТМ практически полностью задерживается в поверхностном слое почвы, поскольку миграция вниз по почвенному профилю происходит крайне медленно: со скоростью 0,1…0,4 см/год. Поэтому время полувыведения свинца в зависимости от типа почв может составить от 150 до 400 лет, а для цинка и кадмия – 100…200 лет.

Сельскохозяйственные почвы несколько быстрее очищаются от избыточных количеств некоторых ТМ в силу более интенсивной миграции за счет поверхностного и внутрипочвенного стока, а также из-за того, что заметная часть микроэлементов через корневую систему переходит в зеленую биомассу и уносится с урожаем.

Следует отметить, что загрязнение почв некоторыми токсичными веществами существенно тормозит процесс самоочищения почв от бактерий группы кишечной палочки. Так, при содержании 3,4-бензпирена 100 мкг/кг почвы численность этих бактерий в почве в 2,5 раза выше, чем в контроле, а при концентрации более 100 мкг/кг и до 100 мг/кг – их значительно больше.

Исследования почв в районе металлургических центров, проведенные Институтом почвоведения и агрохимии, свидетельствуют, что в радиусе 10км содержание свинца в 10 раз превышает фоновое значение. Наибольшее превышение отмечено в г.г.Днепропетровске, Запорожье и Мариуполе. Содержание кадмия в 10…100 раз выше фонового уровня отмечено вокруг Донецка, Запорожье, Харькова, Лисичанска; хрома – вокруг Донецка, Запорожье, Кривого Рога, Никополя; железа, никеля – вокруг Кривого Рога; марганца – в районе Никополя. В общем, по данным того же института, около 20% территории Украины загрязнено тяжелыми металлами.

Во время оценки степени загрязнения тяжелыми металлами используют данные о ПДК и их фоновом содержании в почвах основных природно-климатических зон Украины. В случае установления в почве повышенного содержания нескольких металлов загрязнение оценивают по металлу, содержание которого превышает норматив в наибольшей степени.

Один из источников загрязнения окружающей среды – это тяжелые металлы (ТМ), более 40 элементов системы Менделеева. Они принимают участие во многих биологических процессах. Среди наиболее распространенных тяжелых металлов, являются такие элементы:

  • никель;
  • титан;
  • цинк;
  • свинец;
  • ванадий;
  • ртуть;
  • кадмий;
  • олово;
  • хром;
  • медь;
  • марганец;
  • молибден;
  • кобальт.

Источники загрязнения окружающей среды

В широком смысле источники загрязнения окружающей среды тяжелыми металлами можно поделить на природные и техногенные. В первом случае химические элементы попадают в биосферу из-за водной и ветровой эрозии, извержения вулканов, выветривания минералов. Во втором случае ТМ попадают в атмосферу, литосферу, гидросферу из-за активной антропогенной деятельности: при сжигании топлива для получения энергии, при работе металлургической и химической индустрии, в агропромышленности, при добыче ископаемых и т. п.

Во время работы промышленных объектов загрязнение окружающей среды тяжелыми металлами происходит различными путями:

  • в воздух в виде аэрозолей, распространяясь на обширные территории;
  • вместе с промышленными стоками металлы поступают в водоемы, изменяя химический состав рек, морей, океанов, а также попадают в грунтовые воды;
  • оседая в слое почвы, металлы изменяют ее состав, что приводит к ее истощению.

Опасность загрязнения тяжелыми металлами

Основная опасность ТМ заключается в том, что они загрязняют все слои биосферы. В результате в атмосферу попадают выбросы дыма и пыли, затем выпадают в виде . Потом люди и животные дышат грязным воздухом, в организм живых существ попадают эти элементы, вызывая всевозможные патологии и недуги.

Металлы загрязняют все акватории и источники воды. Это порождает проблему дефицита питьевой воды на планете. В некоторых регионах земли люди умирают не только от того, что пьют грязную воду, в последствие чего болеют, но и от обезвоживания.

Накапливаясь в земле, ТМ отравляют растения, произрастающие в ней. Попадая в почву, металлы всасываются в корневую систему, затем поступают в стебли и листья, корнеплоды и семена. Их избыток приводит к ухудшению роста флоры, токсикации, пожелтению, увяданию и гибели растений.

Таким образом, тяжелые металлы негативно влияют на экологию. Они попадают в биосферу различными путями, и, конечно же, в большей мере благодаря деятельности людей. Чтобы замедлить процесс загрязнения ТМ, необходимо контролировать все сферы промышленности, использовать очистительные фильтры и уменьшить количество отходов, в которых могут содержаться металлы.

Главные источники загрязнения окружающей среды - заводы и мусор. Ежедневно человеком вырабатываются тонны отходов. 4% из них идут на переработку. Количество и размеры свалок увеличиваются, что отрицательно сказывается на экологии.

Одна из основных проблем, вызванных такой ситуацией – загрязнение почвы тяжелыми металлами. Ртуть, свинец, кадмий, цинк, медь - самые опасные металлы, которые оседают на поверхности земли. Предельно-допустимая концентрация этих веществ в плодородном слое - 16 ПДК. Превышение этого показателя ведет к загрязнению почвы. При преодолении отметки в 10 ПДК замечают изменение физических свойств земли.

Пути попадания тяжелых металлов в почву

Загрязнение почвы имеет несколько путей. Основные - промышленность, ТБО и окружающая среда.

Твердые бытовые отходы

Чтобы последствия загрязнения бытовыми отходами на землю сводились к минимуму, необходима правильная организация захоронения.

В деревне Воловичи Московской области в 1990-ом году был вырыт двухметровый котлован. Система захоронения выглядит так: два метра отходов отделяются друг от друга слоем земли в 30 сантиметров. В основании рва расположен глиняный замок. На данный момент котлован использован на 98%. Взятые около него образцы выявили, что показатели кислотности и ПДК тяжелых металлов не превышает оптимальную отметку в 16 ПДК, либо очень близки к ней.

Такие же исследования были проведены вблизи свалки мусора в городе Ульяновске. В образцах были обнаружены свинец, медь, кадмий. Содержание металла в этом образце - 29 ПДК, когда допустимая норма 16. Превышение ПДК кадмия при исследовании обнаружено не было. Но если выпадет кислотный осадок, кадмий окислится и его вредоносное содержание превысит допустимые показатели.

На пересечении Московского проспекта с Обводным каналом в Санкт-Петербурге раньше была свалка мусора. Сейчас эта часть города застраивается - там будет жилой комплекс. Район не был обезврежен или очищен. Проба земли в этих местах показала содержание свинца в 270 ПДК.

Окружающая среда

Тяжелые металлы в окружающей среде сконцентрированы также в воде и воздухе. Все, что сбрасывают в атмосферу заводы, рассеивается и оседает на поверхности земли и воды. Влага, если это не пруд или озеро, проходит естественную фильтрацию через почву. Получается, что плодородный слой оказался наименее защищенной средой. Химические элементы накапливаются и приводят к его истощению.

В 2015-ом году на Уфимском заводе цветных металлов была осуществлена проверка очистительных сооружений. Стало известно, что печь для плавления алюминия работала с недостаточной защитой. В атмосферу были выброшены опасные пары. Образцы вблизи завода показали, что ПДК свинца превысило норму в 20 раз, кадмия - в 16.

Промышленность

Промышленные предприятия, находящиеся в непосредственной близости от населенного пункта, оказывают самое сильное влияние на экологию города. Металлургические заводы загрязняют окружающую среду на 10 - 15 км вокруг.

На Среднем и Южном Урале сосредоточено крупнейшее металлургическое производство страны. При исследовании почв в Ревде, Асбесте, Реже показатели ПДК тяжелых металлов были превышены в 5 - 10 раз. 12% территории Челябинска относится к зоне экологического бедствия: содержание цинка и свинца выше нормы в 25 раз.

Город Сызрань Самарской области известен крупными предприятиями по переработке нефтепродуктов. Почва, взятая на пробу в радиусе 15 км от завода «Тяжмаш», показала превышение ПДК свинца в 2,5 раза.

Индикаторы загрязнения почвы

Самыми распространенными индикаторами загрязнения являются растения и микроорганизмы. У цветов наблюдается отмирание листьев - в почве накопился цинк. Они медленно растут - земля переполнена медью. Ненормальное развитие растения в целом говорит о превышенном показателе кобальта. Самым часто используемым биологическим индикатором загрязнения почвы тяжелыми металлами являются слива и фасоль.


Микроорганизмы в отравленном плодородном слое ведут себя по-разному в зависимости от местонахождения. На лесопарковых территориях микроорганизмы более активны. Это связано с тем, что почва там загрязнена меньше.

В зоне, приближенной к предприятиям и свалкам, наблюдается снижение численности микроорганизмов и почвенных животных. Тяжелые металлы влияют на их жизнедеятельность: микроорганизмы начинают медленно развиваться, плохо растут, наблюдаются изменения на генетическом уровне.

Биота либо погибает, либо выбирает другие места обитания.

Способы очистки почвы от тяжелых металлов

Существует три метода очистки почв от загрязнения тяжелыми металлами: физический, химический и биологический.

Физический и химический методы

Эти два метода, как правило, применяются совместно. Загрязненный слой снимается и проходит электрохимическое выщелачивание. Происходит переход металлов в подвижную форму. Затем обезвреженная земля помещается назад, слои перемешиваются. Полученный образец снова берется на анализ. Если содержание металлов не превышает ПДК, почва пригодна для сельского хозяйства.


Биологический метод

Суть метода в высадке семян растений семейства сложноцветных: мятлик, полынь, тысячелистник, клевер. Семена высеваются в соотношении 1:1:1 в количестве 1, 5 – 2 миллиона штук на гектар земли. Когда растения достигают периода бурного роста, надземную часть скашивают, высушивают и удаляют. Процесс повторяется несколько раз, после чего проводится анализ. Этот метод очистки от загрязнений считается безопасным, так как на почву не воздействует химия.